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Abstract: Let G be a doubly connected domain in the complex plane €, bounded
by regular curves. In this study the approximation properties of the functions by
Faber-Laurent rational functions in the p — power weighted grand variable exponent
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1. Introduction

Let T denote the interval [0,27],0:T—R be a weight function, i.e.,

almost everywhere (a.e.) positive and integrable function on T and
L”(T),1< p<oo , the Lebesgue space of measurable functions on T .
Let us denote by g the class of Lebesgue measurable functions

p:T—(Loo) such that 1< p, =essinf p(x)< p":=esssup p(x)<oo. The
Xe xeT

conjugate exponent of p(x)is shown by p'(x) ::p(L;()l' For p(.)ep(T),
X -

we define a class Lp(')(']l“) of 2z periodic measurable functions

f : T — R satisfying the condition
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p(X)dX <.

It ()

T

This class L™ (']I‘) is a Banach space with respect to the norm

p(x)
dx <1

o el f(x)
[ fl0,) :=inf ,1>o.qu‘7

We say that a function p(.)e @ (T)belongs to the class ' (T)if there is a
positive constant C such that for all X,y €T with |X— y| <1/2

‘p(x)—p(y)\ﬁm-

The spaces LP(')(T)are called generalized Lebesgue spaces with variable
exponent. It is know that for p(x):= p(0< p <), the space L7V (T) coincides

with the Lebesgue space L” (T). If p* <oo then the spaces LPV) (T) represent a

special case of the so-called Orlicz-Musielak spaces [45]. For the first time
Lebesgue spaces with variable exponent was introduced by Orlicz [46]. Note that
the generalized Lebesgue spaces with variable exponents are used in the theory of
elasticity, in mechanics, especially in fluid dynamics for the modelling of
electrorheological fluids, in the theory of differential operators, and in variational
calculus [10], [11], [12], [48] and [50]. Detailed information about properties of the
Lebesgue spaces with variable exponent can be found in [6], [14], [41], [44], [49]
and [56]. Note that, some of the fundamental problems of the approximation theory
in the generalized Lebesgue spaces with variable exponent of periodic and non-
periodic functions were studied and solved by Sharapudinov [55], [56] and [57].

A function @: T — [O, oo] is called a weight function if @ is a measurable
and almost everywhere (a. e.) positive.
Let @ be a 2z periodic weight function. We denote by
L° (’]I‘, a)),1< p <o the weighted Lebesgue space of 2z periodic measurable
1
functions f :T — Csuchthat fw® e L (T).Forf fwe L’ (T, @) we set
1

f P

|f

L°(T,@)

L?(T)
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Let T C be a Jordan rectifiable curve and let @:I'—[0,0] be a
weight function, that is a positive almost everywhere (a.e.) and integrable function
on I'. For 1< p<oo we define a class L"(I",@) of Lebesgue measurable

functions f on I" satisfying the condition

1

|l o< | <o

where |['| is the length of T'. We denote by L”’(T',@), 6>0,1<p<oo the

Lebesgue space of all measurable functions f on I', that is, the space of all such
functions for which
1
|dz|] <00,

” ”LP)Hrw = Sup [ |J‘|f

The space LP»o (Fa)) is called the weighted generalized grand Lebesgue

spaces. 2 (F, a)) is the Banach function space, non-reflexive, non-separable and

non-rearrangement. The grand and generalized grand Lebesgue space were
introduced in the works [33] and [23], respectively. If &, <6&,then for

0 < & < p—1the embeddings

L? (T 0) = LP* (T 0) = LP* (I o) c L"* (T, ),1< p<o
hold. Note that the information about properties and applications of the grand
Lebesgue spaces can be found in [7], [8], [20], [23], [33], [40], [52] and [53].

Let 6>0and p(.)e @(T).We denote by Lp(')’g(']l‘)the grand variable
exponent Lebesgue space of all measurable functions f onT, that is, the space of

all such functions for which
0

” f |||_P(-)v0 (T) = 0<2up & p.—¢

Note that when p(.): p is a constant function, these spaces coincide with the

grand Lebesgue spaces L™’ (T).

If O<e<p,—1, it is easy to see that the following continuous

embeddings
hold
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L") (T) < LPO(T) < LY (T) < L
due to |T| <1 (see [19], [42])
Let @ be a weight function. on T and p(.) € p(T). The weighted grand

variable exponent Lebesgue spaces LPUM (T,w)is the class of all measurable
functions f for which

4

” f |||_p(.),9 (T.0) = Oigg ghe

< 0

f “LF’(')* (T,)

1

Note that for f  L°V (T, ) the norm equality | f ||Lp<.),y(mw) =|fo™

LPO9(T)
is not valid in L (T, @) (see [21]).

If 0<C<w, p(.)ep(T)and 6, <b,then for 0< &< p, —Lthe
following continuous embeddings hold

L")(T,w) = LV (T, w) L'V (T, 0) < L (T, 0) < L (T) < L'

due to (see [19], [42]).
Let h be a continuous function and let

o(h,t):= sup |h(t)-h(t,),t>0

ti—tz <t
be its modulus of continuity.
Let I"be a smooth Jordan curve and let H(S)be the angle between the
tangent and the positive real axis expressed as a function of arc length s. If T" has
a modulus of continuity a)(Q, S) satisfied the Dini smooth condition

5
w(6,s
j (—) ds<ow, >0,
0 S
then we say that I" is a Dini smooth curve.
A Jordan curve T'is called regular, if there exists a number ¢ > 0such

that for every r >0, sup{‘l“m D(Z,r)‘ 17 eF} <cr, where D(z,r)is an open
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disk with radius r and centered at z and ‘FmD(z,r)‘ is the length of the set
I'nD(z,r).

Let p(.)e@(T) and let @ be a weight function on T. wis said to
satisfy Muckenhoupt’s Ap(_) —conditionon T if

WX, Hp(_) HwﬁllBJ Hp‘(.) <% ]7/ p(.)+l/ P I() =1

-1
suplg
B,

where supremum is taken over all open intervals B; < T with the characteristic

functions X, -

Let us further assume that Bis a simply connected domain with a
rectifiable Jordan boundary I'and B™ :=extI". Without loss of generality we
assume that 0 € B . Let

T= {a)e C:|w:ﬂ}, D:=intT, D™ =extT
Also, ¢* stand for the conformal mapping of B~ onto D™ normalized by

¢ (oo):oo

and

Iimm>0,

Z—0 Z

and let w" be the inverse of ¢ . Let ¢ be the conformai mapping of B onto

D™ , normalized by

¢ (0)=o0
and
lim 24 (2)>0.

The inverse mapping of ¢ will be denoted by v, .

Note that the mappings " and " have in some deleted neighborhood of
00 representations

A

» +..,a>0

* @& X
v (0)=ao+ay+—2+—2+..+
o o w

and
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Wf(w)=ﬁ+£§+...+ﬁi+...,ﬁl >0.
© ® w

We set p; = p(z//(a))) and p; = p(t//l* (a))) .For 0<&< p(.)—1 the functions

-t
dy" (@) ) e
do

v (w)-2

. 2eB

and

1

o sz—s ( dy; (o) Tpfg

do

, 2eB”
vile)z T

are analytic in the domain D.
Let p(.) e p™ (B‘) . The following expansions hold :

P
(dw*(a))] Py
do < (I)k,p(.)—e(z)

= : B, D~
V()2 kZ:(; qir o 1€Boe

and
1

2 * 1_*7
S (dyi (o)) 5 )
1) r R =
@ p()-¢ 7

=) ———=, B-, D,
Vi (@)1 kZﬂ: T zeB ,we

where @, p(H(z) and F_ ), (lj are the p(.)—& Faber polynomials of
o 20| 7

1 _ —_
degree k with respect to z and — for the continuums B and B~ , respectively
/4

(see also [9], [29], [31] and [51, pp. 255-257]).
Let E' ( B) be a classical Smirnov class of analytic functions in B . The set

EP)’H(B,(:)) = {f € El(B): f eP? (F, a))} is called the — weighted
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generalized grand Smirnov class in B.

We denote the closure of Lp(')(’ﬂ‘,w) by T

(T,w). If

f p(-).0 .
eL " (T,w) then according to [19] we have
6’
e, =0

We denote the Hardy-Littlewood maximal operator Mf of f by
= sup ﬁﬂ f(x)|dx, xeT,
I |

where the supremum is taken over all intervals | whose length is less than 27 .
We consider power weights of the form

p(t)=lt—t|", t,eT, —1<y<(p(ty)-1). Note that if
p(.)e@(T).t, e(-7 7), p(t)=[t—t,| and —1<7/<(p(to)—1), then

according to [18] the Hardy-Littlewood maximal operator Mf is bounded in
PO (T, p), 6>0.

The  function  p(t)=|t—t|", 1<y <(p(t,)—1)satisfies  the
Ap(.) condition of Muckenhoupt weights. Therefore, according to [4] we have the

continuous embedding L’ (T, p) = L'(T).

Let p(.)ep(T), p(t)=[t—t,[ ., 1<y <(p(t,)-1) and #>0. For

p().0

feL " (T, p)we define the operator

x)::%:[

A f (x)‘dt, h>0

where

Af(X)= kio(—l)”k”(l:j f(we"), reN={6012,..}, t>0,

Note that the operator v, is a bounded on L"*"* (T, p) [5]:
v (F)

Let f PV (T,p),0>0 and p(.)e @(T). The function

P09 (7 —01” ”Lp( ()’ ,0>0.

[j<s
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)0, (f,6)=sup

|hj<s

p(')ﬂ('ﬂ‘,p) ’ 5 > 0

vy f (@)

is called the r - th mean modulus of f e LPV? (T, p).

It can be easily shown that Q;(_)’H’p ( f ) is a continuous, nonnegative and
nondecreasing function satisfying the conditions [5]

limay,, (f,6)=0, @, (f+9,5)<Q

50 p().0,
for f,geL’’(T,p).

Let G be a doubly connected domain in the complex plane C, bounded by the
rectifiable Jordan curves I'; and I', (the closed curve I', is in the closed curve

(1,6)+9,,,(6,6),5>0

[,). Without loss of generality we assume O eintT, . Let G =intT,
G, =extl,, G =intT",, Gy :=extl,.

We denote by w=¢5(z)the conformal mapping of G;°onto domain D~
normalized by the conditions

z
¢(0) =0, Iimm =1
Z—>© Z
and let i be the inverse mapping of ¢ .
We denote by @ = ¢ (z) the conformal mapping of G, onto domain

D™ normalized by the conditions

¢(0) =0, lim(z4(2)) =1,

and let y, be the inverse mapping of ¢,.
Let us take

={z:p(2)=p>1. T, ={z:lh (2] =r >1).

For @, ., (z)and D, re (%) the following integral representations hold [9],

[29], [31] and [51, pp.255-257]:
1) If zeintC, , then

o f[vﬁ T (2 (1)

kp()-e\ ) T -z
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2) If ze exth0 , then

1

o, . (2)=[6(2)] (¢ (2))7<

. (2)
1 [#(O] (#())r
27i CJ;J -1 d¢
3) If zeintC, , then
o fferEwer
1 [4()] 7 (4(¢))7
"2l s ac
4) If zeextC_, then
1 1[4 (C)]kfr’@z)f«f (& (g))p(;)—g
Fk,p(-)s(;jz_z_ﬂ_ié" é/_z dé/ (4)

We set p,= p(t//(a))) and p,= p(l//l(a))). If a function f(z)is
analytic in the doubly connected domain bounded by the curves CpO and L., then
the fallowing series expansion holds:

N z 1
f (Z) = kz:l;akq)k,p(.)fg (Z)+ kz:llbk Fk’p(_)% (Ej ) (5)
where
1
1 fly(o)](v (o)~
% 2 Jpl ] do, (1<p <py), k=012..
and
1 2
1 Hn(@)](e)r o
bk:27ri wJ;rl : (a)lkﬂ ) dw7(1<f1<ro),k=1,2...

The series (5) is called the p(.)—g Faber -Laurent series of f , and the

coefficients a and b, are said to be the p(.)—g Faber -Laurent coefficients of
f.For z e G by Cauchy’s integral formulae we have

f(z)=t [ 1)y 1 (T,

_27zirlé’—z _27Z'i1_2§—2
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If zeintl',and z eextl’;, then

f(z)= 1_jf(§)d§—21|j f(ég)d§=o. (6)

2y { -1 mp &-1

Let us consider

1 f 1 ¢ f(
Il(z)::z—ﬂif..gdg, l,(2) ::2—J§—9?d§

The function 1,(z) determines the functions 1" (z) and 1; (z) while the
function 1, (z)determines the functions 1, (z) and 1, (z). The functions I;" ()
and 17 (z) are analytic in intI", and extI";, respectively. The functions I, ()

and |2_(Z) are analytic in intI", and extI",, respectively.

Let B be a finite domain in the complex plane bounded by a rectifiable
Jordan curve I and f e L, (I). Then the functions f* and f~ defined by

f+(z):—2im_|' z(g)dg zeB

and

2 IJ.—)dé’ zeB”
V4

are analytic in B and B respectively, and f~(o0)=0. Thus the limit

exists and is finite for almostall zeT".

The quantity S.(f)(z)is called the Cauchy singular integral of f at

zel'.
According to the Privalov theorem [22, pp.431], if one of the functions f* or
f~ has the non-tangential limits a.e. on T', then S_( f)(z) exists a.e. on I'and
also the other one has the non-tangential limits a.e. on I'. Conversely, if
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S.(f)(z) exists ae. on T, then the functions f*(z) and f~(z) have non-
tangential limits a.e. on I". In both cases, the formulae

and hence
f=f"—f" @)

holdsa.e.on I".
Let T' be a regular Jordan curve. Assume that p(.) € ' (I")and

1 1
p(z)=|z-1,", z, €T, —— <y <——— Then from the results given in
( ) | 0| 0 p(zo) p(zo)

[43], it follows that singular integral S ( f) is bounded on LPOM (T, p), 6>0.

We will say that the doubly connected domain G is bounded by the
regular curve if the domains Gf and Gg are bounded by the closed regular curves.

Let I;(i=12) be a regular curve. We set p,(@):= p(l//(a)))
p.(@)=p(wy (),
fo= [y (o) ](w '(a)))po = for f € L’V (T,,)and let
f = f[(//l :|( (a)))Pl 2 a)plz‘g for f e L"(T,,@).
We also set p, (@)= p[v ()], p,(@)=p|y,(®)]. Then,if
felP( l,,o) and f e L""’(T,, p) we obtain f, € L (T, p,)
and f, e L"V(T, p,).
Moreover, f; (o0)= f,"(o0)=0and by (1.7)

= f, (0)-f; (0)
f (w)- fl_(a))} ©)

ae.onT.
Now, in the doubly connected domain we define the @— weighted grand

variable exponent Smirnov class. Let El(G) be a classical Smirnov class of ana-

lytic functions in G. The set E"’(G,w) ::(f cEY(G): f el?V’ (F,a)))is
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called the @ —weighted grand variable exponent Smirnov class in G . We denote
by Wp(‘)'g(G,a)) the closure of Smirov class EP(G,w) in the space

g P02 (G w).

Using the proof scheme developed in the work [30, Lemma 3 ] we can
prove the following Lemma.
Lemma 1.1. Let

p(t) St—t, 1, -1<y<(p (t,)-1), t, €T, p(.) e (T)and
gel0(T, p), 0>0. Then the inequality

0, (97)£CQY L, (900)
holds.

The following Theorem is the disk version of theorem proved in [5].
Theorem 1.2.

Let  p(t) Ft—t, ], -1<y<(p (t,)-D, t, €T, p(.)ep(T) and
geW p(')"Q(D, p), 0>0.If idk(g)a}" is the nth partial sum of the Taylor
series of g at the origin, then thekr:g exists a constant ¢, >0 such that
g(a))—gdk(a))a)k SCzQ;(.),a,p(Q’%j-VEN

for every natural number n.

We set
n n 1
Rn ( f ! Z) = ;a‘kq)k,p(.)—e (Z)+;bk Fk,p(.)—s (Ej )

LPOO(T, p)

The rational function Rn(f,z) is called the p—& Faber-Laurent rational

function of degree n of f .

Since series of Faber polynomials are a generalization of Taylor series to
the case of a simply connected domain, it is natural to consider the construction of
a similar generalization of Laurent series to the case of a doubly-connected
domain.

In this study, when the power weight function is of the

formp(t) =z-2z,l, z,el’ we study the

1
<y<— y Z,
p(z,) p'(z)
approximation properties of the functions by Faber-Laurent rational functions in
the p— power weighted grand variable exponent Smirnov classes W P00 (G, a))
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6 >0, defined in the doubly connected domains with the regular boundaries.
Similar problems in the different spaces were investigated by several authors (see
for example, [1]-[4], [9], [15-19], [24-32], [34-39], [47], [51], [58] and [59]).

We write a<b if a<cb,and ai b if a<b and b<a at the same
time.If ai b then we will say that a and b are equivalent.

Our main result can be formulated as following.

Theorem 1.3. Let G be a finite doubly connected domain with the regular

boundary I' =T, UT,, p(.) € 9 (T), p, (.) € ' (T) and p,(.) € " (T).
Assume that | <oo and 6> 0. Let z, be a fixed pointon I". If

1 1
p(2)=lz-2z], <y<—

constant ¢, >0 such that forany n=1,2,3,...

Hf_ f)LP( (rp) { apo(fo’]/n)+Qplgpl(fl,]/n)},

where | isadiametrof I and R, (., f) isthe p(.)—¢& Faber-Laurent rational

and f e W PV (G, ), then there is a

function of degree n of f .
Note that if the curve I" is a Dini smooth curve, then since

p(-)e i (T). py(-) € i (T) and
p.(.) € " (T)are equivalet, the conditions P (-) € (T) and

p.(-)€ %" (T) can be removed in Theorem 1.3. In this case the following

corollary can be expressed.
Corollary 1.1. Let G be a finite doubly connected domain with the Dini

smooth boundary I'=T, UT,, p(.)e " (T"). Assume that | <o and 6>0.
1 1

p(z) P (2)

few ™ (G p), then there is a constant ¢, >0 such that for any
n=123,..

Hf _Rn (" f) LD(Jﬂ(r,p) <C { Po.6.20 ( fO’]/n)+qu901 ( fl’]/n)}’

where | is a diametr of ' and R, (., f) isthe p(.)—¢& Faber-Laurent rational

and

Let z, be a fixed point on T. If p(z)=|z—1z,,

function of degree n of f .

Note that curve I' is a Dini smooth curve, similar results were obtained in
[30] and [32] studies in Lebesgue spaces variable exponent.
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2. Proof of Main Result

Proof of Theorem 13. We take the curves I',,I', and
T:={we C:|w|=1}as the curves of integration in the formulas (1.2) - (1.5) and
(1.6), respectively. (This is possible due to the conditions of theorem 1.1). Let
f egPl? (G,p).Then fy e ™ (T, p,), f, €&™’ (T, p,). According to (1.8)

9)
(&) =[ £ (4(£) - (4()(A(S)) e (4 (&))er
Letz eextl’;. From (2) and (9) we have
Sa0,,,
ey O R
zal@l (r@pneon ] o ¢ )

1

L @O Y also)] -1 [6()]
+— k=0 dé/
27 ¢ -1z
e I O

For z eextl’,, the relations(4) and (9) imply that
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2OR( 2 )" 2] i d
TGN (11)
27 = -z de
L @) (@) | v a)]-Eala()] |
_ =t k=0 dé
27i E-12
“2a) e

For z eextl’, taking into account (10), (11) we obtain

kZ:;ak [ch(z)]k +kZ::bka (%j

1

: k : (# ()7 > a[o(6)] - [9(¢)]
-Sala@] @)k == %
. ((6)) (¢1(é))p<5>6[ff (4(£)-2b, M(é)ﬂ
_f07[¢(z):|+ﬁl:‘- F—z = dé.

Taking limitas z— z* €I, along all non-tangential paths outside T', ,
appears that

38
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RGO
_EZ?J gii de 12)

ae.on I’ .

Now using (12), Minkowski’s inequality and the boundedness of Srl in

LP (T, p) [43] we get

[f=R. (- )

L (Ty,p)

>

f" (w)- Zn:bka)k

k=0

+C;
LP(T, py )

(13)

k=0 LPLO(T, py)

That is, the Faber-Laurent coefficients a, and b, of the function f are the

Taylor coefficients of the functions f* and f,", respectively. Then by (13),
Lemma 1.1 and Theorem 1.2 we obtain

[f-R,( f )||Lp(_),,,(r1’p) <c,( p){ngoﬂ,po (fo.1/n)+9y , ( fl,J/n)} .

Let zeintI",. Consideration of (3) and (9) gives us
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>

e ]

k=1
1 2

= ¢1’(z))p(2)78 (¢1(Z)) p(z)-¢ Zn:bk [¢1(Z)]

( ] = d¢ (14)

_Zimj = dé
o ] W (]2 (4 (2) 7

2 = a¢ (15)

. ds

_2_7rir1 -1z

1 1($)
+%r{§_zd§.

Now, by virtue of (14) and (15) for z intI,, we conclude that
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Zn:akCDk (z)+zn:bka (%j

@) (Sale@)] - ko))

1 =
:__r{ = d¢

(2 (4 (@) 7 S [ (2)]
, P () S0 AT - (4()]

_Tmr{ 5_; ac

1 2

- LA (2)](d(2)70 (4(2)) "o

Taking limitas z— z" €T", along all non-tangential paths outside I, ,
we reach

d¢ (16)

ae.onl,.
Using (16), Minkowski’s inequality and the boundedness of Sr2 in

[ PO)2 (F2’ p)
[40] we get

[f=R,(.f) (s p)

<G| f) (a))—zn:bka)k +Cy
k=1

L O(T )

a7

fo [a)—Zaka)kj
k=0

LPO-0(7 )
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Use of (17) and Lemma 1.1 and Theorem 1.2 leads to

[f=R.(.7)

LP(1,,p) <Cp {Ql;lﬂ.pl ( fl’]/n)—i_Q;oﬂ,po ( fo’]/n)} :

The proof is complete.

3. Conclusion

Variable exponential Lebesgue spaces Lp('), known as generalizations of
Lebesgue spaces, appeared in literature for the first time in 1931 with an article
written by Orlicz [46]. Note that the generalized Lebesgue spaces with variable
exponents are used in the theory of elasticity, in mechanics, especially in fluid
dynamics for the modelling of electrorheological fluids, in the theory of diferential
operators, and in variational calculus (see, for example, [10], [11], [12], [48] and
[50]). We investigate the approximation properties of the functions by Faber-
Laurent rational functions in the p— power weighted grand variable exponent

Smirnov classes defined in the doubly connected domain of the complex plane.
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